Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 6770, 2024 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514686

RESUMO

Many animals return to their home areas (i.e., 'homing') after translocation to sites further away. Such translocations have traditionally been used in behavioral ecology to understand the orientation and migration behavior of animals. The movement itself can then be followed by marking and recapturing animals or by tracking, for example, using GPS systems. Most detailed studies investigating this behavior have been conducted in smaller vertebrates (e.g., birds, amphibians, and mice), whereas information on larger mammals, such as red deer, is sparse. We conducted GPS-assisted translocation experiments with red deer at two sites in the Czech Republic. Individuals were translocated over a distance of approximately 11 km and their home journey was tracked. Circular statistics were used to test for significant homeward orientation at distances of 100, 500, 1000, and 5000 m from the release site. In addition, we applied Lavielle trajectory segmentation to identify the different phases of homing behavior. Thirty-one out of 35 translocations resulted in successful homing, with a median time of 4.75 days (range 1.23-100 days). Animals were significantly oriented towards home immediately after release and again when they came closer to home; however, they did not show a significant orientation at the distances in between. We were able to identify three homing phases, an initial 'exploratory phase', followed by a 'homing phase' which sometimes was again followed by an 'arrival phase'. The 'homing phase' was characterized by the straightest paths and fastest movements. However, the variation between translocation events was considerable. We showed good homing abilities of red deer after translocation. Our results demonstrate the feasibility of conducting experiments with environmental manipulations (e.g., to impede the use of sensory cues) close to the release site. The homing behavior of red deer is comparable to that of other species, and might represent general homing behavior patterns in animals. Follow-up studies should further dissect and investigate the drivers of the individual variations observed and try to identify the sensory cues used during homing.


Assuntos
Cervos , Comportamento de Retorno ao Território Vital , Animais , Camundongos , Columbidae , Movimento , Ecologia , Translocação Genética
2.
Sci Total Environ ; 879: 163106, 2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-36966827

RESUMO

Expansion of urban areas, landscape transformation and increasing human outdoor activities strongly affect wildlife behaviour. The outbreak of the COVID-19 pandemic in particular led to drastic changes in human behaviour, exposing wildlife around the world to either reduced or increased human presence, potentially altering animal behaviour. Here, we investigate behavioural responses of wild boar (Sus scrofa) to changing numbers of human visitors to a suburban forest near Prague, Czech Republic, during the first 2.5 years of the COVID-19 epidemic (April 2019-November 2021). We used bio-logging and movement data of 63 GPS-collared wild boar and human visitation data based on an automatic counter installed in the field. We hypothesised that higher levels of human leisure activity will have a disturbing effect on wild boar behaviour manifested in increased movements and ranging, energy spent, and disrupted sleep patterns. Interestingly, whilst the number of people visiting the forest varied by two orders of magnitude (from 36 to 3431 people weekly), even high levels of human presence (>2000 visitors per week) did not affect weekly distance travelled, home range size, and maximum displacement of wild boar. Instead, individuals spent 41 % more energy at high levels of human presence (>2000 visitors per week), with more erratic sleep patterns, characterised by shorter and more frequent sleeping bouts. Our results highlight multifaceted effects of increased human activities ('anthropulses'), such as those related to COVID-19 countermeasures, on animal behaviour. High human pressure may not affect animal movements or habitat use, especially in highly adaptable species such as wild boar, but may disrupt animal activity rhythms, with potentially detrimental fitness consequences. Such subtle behavioural responses can be overlooked if using only standard tracking technology.


Assuntos
Sus scrofa , Animais , Humanos , Animais Selvagens , COVID-19 , Ecossistema , Pandemias , Sus scrofa/fisiologia , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...